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Given the vacuum state, what is the probability that the final
state is that of an electron?
Conservation laws will ensure creation of a positron.

We need to understand the vacuum state first. ..



Understanding Vacuum

» Here's the story

Dirac was trying doing something interesting. ..



Understanding Vacuum

» Dirac was trying to unify Special Theory of relativity with
Quantum Mechanics.

» According to special theory of relativity(in natural units)
E? = p? + m?
E=+p?+ m?

where E, p(= |p|) and m are the Energy , momentum and
mass of the particle.

Problem
There are unbounded negative energy states.



Dirac’s Picture of Vacuum
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> The negative energy states are already filled with electrons.

> The minimum energy required for a negative energy state
electron to go into positive energy state is twice the mass of
an electron.

How is this energy given?



Regimes of Pair Production in Laser field
It is an interplay of Laser intensity and Frequency

» High electric field - Tunneling Regime

Tunneling



Regimes of Pair Production in Laser field

» Low electric field - Multiphoton Regime

» High Frequency field, i. e. few photons field

5] % + m?

Resonance Out of Resonance



Quasiclassical Estimate
» The wavefunction in quasiclassical approximation is given by

v e (5 1)

Here, Sy is the action of positive/negative energy states of
electron.

» The fields we shall take is purely time dependent. This makes
5S¢ = p.rF So(wt) where
So(n) = (1/w) [ dif[(F — eA)* + m?]

» The transition amplitude is given by
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where qg is the quasistatic energy of electron and C,, are the
fourier coefficients of periodic part of transition amplitude.



Finding Pair Production Probabilities in Quasiclassical
Approximation

» The fourier coefficients C,, determine the probabilities of
n-photon process
W, |C,,\2



» Given a purely time dependent electric field, one should be
able to get the fourier coefficients C,,.

OR

> A, = ei(Constant phase)cn_



For Example

Consider Rotating Electric Field
» E = 9A/dt , where the vector potential is

Ay = ™S

A(n) el (Xcosn + ysinn) (2)

where nn = wt, & is the field strength parameter such that
méw/|e| is the peak electric field.

For this Field there exist an expression for the fourier
coefficients A,



The fourier coefficients are given by. ..

Al — 1 /07r dn exp (2/({) [E(n\,u) — 2E(u)n} + 2im])
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with E(u) = E(7/2|p)



Results of Asymptotic Analysis

By using Saddle Point Approximation

> In high electric field strength (£ >> 1), the probability of pair
production is
W o exp(—mE./E)

> In low electric field £ << 1,
W 52”0

where ng = 2qo/w



Quantum Mechanical Analysis

We shall discuss two techniques
1. Bogolyubov Transformation

2. Free Basis Expansion



Bogolyubov Transformation Technique

Consider the Hamiltonian of the problem ...

H(t) = / LWl (x)H()W(x) (3)

where
H(t) = @[—iV — eA(t)] + Sm

Since canonical momentum is conserved, we analyse the problem
in a subspace of a definite momentum p. The field operator is

written as o
elP-r

With this
H(t) = ®T(t)H(t)9(t)

where H(t) = a[5 — eA(t)] + Sm



Bogolyubov Transformation Technique

The operator ¥ = —iBaxa,

=~ o, 0
X = [0 —Jz:|

» |t is a 4-Dimensional Matrix.
> It commutes with H5(t).

» It has eigen values +1 and -1, with eigen spaces |+1) and

|—1) given by
®4(t) 0
|+1) = 8 and |-1) = i;gg
®o(t) 0

We shall work in the subspace |+1)



Finding Probability of Pair Production

Suppose the field is switched on at t = t;, and switched off at
t = toyr. Define IN and OUT operators as follows

O(t) = ain®7(t) + bl &7 = a0uPLe(t) + bl P,

out

where dﬁ(t) are exact solutions of Dirac Equation, which obey the
boundary condition of being positive end negative energy eigen
spinor of Hz(t) at t < tip.

» a;, annihilates an electron. a}-Ln creates electron.

> b;, annihilates a positron. b,Tn creates a positron.



Finding Probability of Pair Production

The IN and OUT creation and annihilation operators are related by
Bogolyubov transformation

T

aout = C2ajn — C1 by,
T * T
bour = c1ain + 3 by,

with |c1]? + |c2|> = 1. The pair production probability is thus given
by

w = (0jn] @b dout [0in) = |c1]? (Oin] binb! 10in) = |c1|?



The Hamiltonian can be diagonalised at every moment during
interaction with proper Bogolyubov Transformation

a(t) = g*(t)ain + f(t)blTn
bT(t) = —f*(t)ain + g(t)b/Tn

such that |f(t)|? + |g(t)]? =1
The probability of pair production is given by

W =|f(t)?

For a given pulse of duration tou: — tin, |c1]? = |F(tout)|?



Time Evolution of f(t) and g(t).

One can find differential equations for f and g which are given by

fi(t) = ic(t)f(t) + d(t)g(t)
g'(t) = —d"(t)f(t) — ic(t)g(t)

where ¢(t) and d(t) are functions of mass and momentum of
electron and the applied vector potential.

» This can be solved numerically. But some analytic work can
also be done.

» We solve this system using the initial condition f(t;,) = 0.



Results From Analytic Work

Rabi Oscillations at Resonance

» For an interaction of time 7 = t,,: — tj,, the pair production
probability is given by

_ |bn,|?

W(r) = 22 sin® Q7
Q2 0

where Q= \/|bno |2 + (2g0 — now)? /4 is the rabi frequency.
> bpy ~ Ap,. Thus, W o | Ap,|?, as shown in quasiclassical
approximation.



The technique of ...

Free Basis Expansion



Free Basis. . .

Consider the Dirac Hamiltonian

o,
i () =H(t)(x) (4)

This equation when solved for #(t) = a.[—iV — eA(t)] + Sm, with
A =0, gives the free solutions. Here x = (t,x) and p = (E, p).

» Denote the free solutions as

¢p(x), where r € {1,2,3,4}



Expand wave function (in presence of field) in terms of free

basis.
Up(x) = F()dp(x) + c(t)g5(x) + d(t)d3 (x) +
where
1
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On putting the wavefunction in Dirac equation with field
switched on. ..

We obtain following coupled Differential Equation

% t) = s(t)F(t) + v(t)g(t)

% (1) = v (1) + (D8 (1)

where x and v are functions of mass and momentum of electron
and the vector potential applied.

» The Pair Production probability is given by
W = |f(t)”

» This system of equations can be transforned to a simple
form...



A simple looking form

9 1) = ot

98 1y = ¢ (t)F (1)

where f = ef(Phase)f 7 — eilPhase) g and ((t) is a function of
electron mass, momentum and of the vector potential.

» This system of equation was numerically solved for p= 0, and
& =1 of an oscillating electric field.



Numerical Studies

The Vector Potential
The following pulse is applied

Laser Pulse
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The x-axis represents n = wt.




Evolution

Probability
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Total Probability and PP probability for four half cycles and 1 emu laser angular frequency.
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Resonant Frequencies

Resonance
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Laser Angular Frequency( in units of electron mass)

The resonant frequencies are
0.2214656,0.270911, 0.38492,0.49150 and 0.82 in units of electron

mass.



Rabi Oscillations at Resonant Frequencies

» Rabi Oscillations are observed at resonance frequencies as
predicted analytically by using the technique of Bogolyubov
Transformation.

Rabi Angular Frequency = 5.70651619354e-05 Rabi Angular Frequency = 0.000233150796595
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» Rabi Frequency was found by fitting with sin?[(27Q/w)N]



Rabi Oscillations at Resonant Frequencies
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Summary

» Using Quasi Classical Approximation we showed that Pair
Production depends on the fourier coefficients of the periodic
part of transition amplitude, and it was confirmed by
Bogolyubov Transformation Technique.

» Bogolyubov transformation technique analytically predicted
Rabi Oscillations at Resonant frequencies of Pair Production.

» This was numerically confirmed by the technique Free Basis
Expansion.



Future Work

We shall further extend the study for a chirped laser pulse. The
electric field of the chirp is given by

E(t) = Egcosh~2(t/T) cos(wot + Bt% + at®)

where Egy,wp, T, B, o are constants.
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